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ABSTRACT
Motion capture data presents a unique challenge to data mining
and database search. Several MoCap data formats exist, typically
specifying the pose of a human armature over a series of frames.
Pose estimation from video and images has been the focus of much
research in recent years, as well as methods for querying MoCap
databases. We propose a method of classifying MoCap data by ac-
tivity type using multinomial classifiers. We trained three different
models to classify individual frames of MoCap clips, then used
winner-take-all voting to classify entire motion clips. Evaluation
showed that Random Forests performed best for this task, achieving
100% accuracy on the CMU MoCap dataset. However this work
highlights the need for larger and better annotated datasets.

1 INTRODUCTION
Classifying the motion state of humans has been an ongoing area
of research spanning at least the last two decades. Most recent
research has been focused on estimating motion from a computer
vision perspective, using video and/or image data. However, these
are not the only types of data which can record human movement.
Motion capture (MoCap) data records the 3D position of a human
armature as a function time which can be reconstructed into the
full motion to be used in applications like computer animation or
robotics. The work done in this paper looks at classifying motion
capture data into various human activities using machine learning.

One of the challengeswith currentMoCap or animation databases
is accurate annotation for searches. Consider a video game devel-
oper searching for a particular animation to use for their human
character. They would likely first query some common animation
database such as the popular web service Mixamo, or game engine
asset stores like those of Unity and Unreal. If those yielded no results
they may try to look into raw motion capture datasets. However,
for anyone who has spent time trying to use these resources it is
apparent that it can be very difficult to find specific animations due
to the generally coarse nature of how data is annotated. As we begin
to see more automated motion capture methods and technologies
arise, the need for automated categorization and annotation will
be critical for large animation and motion datasets to scale with
inflow of data.
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2 PROBLEM DEFINITION
Given motion capture data labeled in correspondence to the action
being performed, the goal is to train a classification model which
can take some or all of a clip of a motion and then assign the correct
label.

Bayesian networks (BNs) encapsulate high level representations
of probability distributions over a set of variablesX = {𝑋1, 𝑋2, . . . , 𝑋𝑛}.
Learning these networks requires both structure learning and pa-
rameter learning. To learn the structure, a directed acyclic graph
must be constructed from the set 𝑋 , where each node corresponds
to a variable and a directed arc indicates a causal relationship be-
tween a parent node and the child node. Once there is a structure,
parameter learning can begin which entails finding probability
distributions, class probabilities, and conditional probabilities asso-
ciated with each variable. If 𝑃𝑎 (𝑋𝑖 ) denotes the set of parents of
the node 𝑋𝑖 , the joint probability distribution is given by

𝑃 (X) =
𝑛∏
𝑖=1

𝑃 (𝑋𝑖 | 𝑃𝑎 (𝑋𝑖 )) (1)

In order to find 𝑃 (𝑋𝑖 | 𝑃𝑎 (𝑋𝑖 )), finding the structure is required.
Learning an optimal structure of a BN has been proven NP-hard.
Instead, the naive Bayes classifier can be used, inwhich the structure
is known. Features in a naive Bayes classifier are conditionally
independent given the class, so the only parent of each feature is
the class. If𝐶 represents the class of example𝑋 , then the probability
of 𝐶 given 𝑋 needs to be found.

𝑃 (𝐶 | X) = 𝑃 (𝐶)𝑃 (X | 𝐶)
𝑃 (X) (2)

Since the features are conditionally independent of each other
given the class, this becomes:

𝑃 (𝐶 | X) =
𝑃 (𝐶)∏𝑛

𝑖=1 𝑃 (𝑋𝑖 | 𝐶)
𝑃 (X) (3)

The naive Bayes classifier works by finding these probabilities
within the training data, and then using them to predict a class on
unseen data [19].

Another classifier used in this project is the Random Forest
classifier. If we have a training set 𝑇 with 𝑎 features or attributes
and 𝑛 examples, then we can define 𝑇𝑘 as a bootstrap training
set constructed by sampling 𝑇 with replacement with𝑚 random
attributes and 𝑛 examples. A Random Tree can then be chosen at
random from a set of possible trees, with𝑚 random attributes at
each node.
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A Random Forest is then defined formally as a classifier consist-
ing of a collection of tree-structured classifiers {ℎ𝑘 (x,𝑇𝑘 )} , 𝑘 =

1, 2, . . . , 𝐿 where 𝑇𝑘 are independently identically distributed ran-
dom samples, and each tree casts a single vote for the most popular
class at input 𝑥 [2, 12]. The random samples of the training set are
produced in a similar way to bagging. The node is split by find-
ing the best split on the selected attributes. For each example in
the training set, votes are combined only from the tree classifiers
that do not contain that example (out-of-bag), such that the out-of-
bag estimate for the generalization error is the error rate for the
out-of-bag classifier.

The strength of each tree in the forest and the correlation be-
tween any two trees influences the error rate of the forest, where the
strength can be thought of as a performance measure for each tree.
Increasing the correlation between trees increases the error rate,
whereas increasing the strength of trees decreases the error rate.
If the number of random attributes selected is reduced, however,
both the strength and the correlation is reduced [12].

Support Vector Machine (SVM) uses a different approach. Given
the training set {(𝒙𝑖 , 𝑦𝑖 )}𝑙𝑖=1, where 𝑥𝑖 is a real number and 𝑦𝑖 ∈

{−1, 1} and 𝜽 =

(
𝒘𝑇 , 𝑏

)𝑇
, SVMs attempt to find a decision hyper-

plane 𝒘𝑇Φ(𝒙) + 𝑏 = 0. Instead of minimizing empirical training
error, SVM tries to minimize an upper bound of the generalization
error by maximizing the area between the separating hyperplane
and the data, such that the separation between classes of data is
also maximized. Formally, the following optimization problem is
solved:

min
𝜃

1
2
∥𝒘 ∥2 +𝐶

𝑙∑
𝑖=1

𝐿

(
1 − 𝑦𝑖

(
𝒘𝑇Φ (𝒙𝑖 ) + 𝑏

))
(4)

where 𝐿(𝑢) is some loss function, 𝐶 > 0 is the regularization
parameter, and Φ (𝒙𝑖 ) is used to map 𝒙𝑖 to a higher dimensional
space. We can then show by differentiating that a minimum 𝑤

satisfies the following:

𝒘 = 𝐶

𝑙∑
𝑖=1

𝑦𝑖 𝜕𝐿 (1 − 𝑦𝑖 𝑓𝜃 (𝒙𝑖 )) Φ (𝒙𝑖 ) (5)

where 𝑓𝜃 (𝒙) = 𝒘𝑇Φ(𝒙) + 𝑏 is the decision function. An input
(𝑥𝑖 , 𝑦𝑖 ) that satisfies 𝜕𝐿 (1 − 𝑦𝑖 𝑓𝜃 (𝒙𝑖 )) ≠ 0 for a given 𝑓𝜃 (𝒙) is a
support vector [17]. In this way, SVMs can condense the information
in the training data and construct a sparse representation using
only a small number of points which are the support vectors.

3 RELATEDWORK
3.1 Human Pose Estimation
There has recently been a flourish in techniques and models for
estimating the pose of humans from image or video data, which
can primarily be attributed to advancements in machine learn-
ing [1, 3, 15, 16, 20]. As these technologies progress, pose data will
become more and more available. Traditionally, human pose data is
acquired through the use of motion capture equipment. Recording
human motion in this fashion is quite restrictive in scope and diffi-
cult to scale due to the need for expensive specialized equipment as
well as requiring fixed studio locations [21]. LCR-NET created by

Rogez et al. [16] is able to achieve impressive results in 2D and 3D
pose estimation from 2D images by combining a pose classifier with
a regressor. LCR-NET can generate pose estimations for multiple
humans in a natural scene simultaneously, even given partial oc-
clusion of limbs. Qammaz et al.’s [14] mocapNET was trained using
motion capture data from the CMU dataset, taking a two-staged
approach which is quite computationally fast. Performance with
this architecture is modest compared to LCR-NET and other state of
the art models, however, it is the only work we are aware of which
outputs directly to BVH file format; making it directly applicable
for use in most commercial animation and video game software.
Shotton et al. [18] developed a pose recognition framework based
on randomized decision forests to be used in conjunction with the
Xbox Kinect. Their method takes a depth-image as input and esti-
mates joint positions. Similar to the work presented in this paper
they utilized a motion capture dataset to train, only considering
static frames.

3.2 Human Pose Classification
The natural extension to the ability to estimate poses is to then
recognize and classify them, which is where our work falls. O. Pat-
sadu et al. [13] were among some of the earliest to implement high
accuracy pose recognition using an SVM. Using 2D pose estimation
from a Kinect camera they were able to classify static poses (sitting,
laying down, standing) with near perfect (99%+) accuracy. Vox and
Wallhoff [22] attempted to expand on this by training a multi-class
SVM to classify motion sequences of 2D poses gathered from a
Kinect. In most cases results were acceptable however, motions
which primarily involved legs tended to have quite poor results.
This is likely because SVMs have difficulty dealing with streaming
data. Du et al. [6] argued that the problem can be treated as a time
series problem, and demonstrated how a recurrent neural network
(RNN) can be used due to its ability to model long term contextual
information. They were able to achieve 95% accuracy on average for
the HDM05 dataset, which is a motion capture dataset in AMC file
format similar to the CMU dataset. Using entire animation clips for
categorization however limits the ability to do on-line classification.
Classifying motion based on one or a few frames decreases the data
and processing overhead significantly. In all cases it is encouraging
how well models are able to perform given the relatively small size
of most motion capture datasets.

4 MOTIVATION AND DOMAIN DESCRIPTION
Recent years have seen substantial developments in human pose
estimation andmotion classification. However, most of the work has
been in the domain of computer vision, in trying to estimate human
pose from video or images [16]. Issac et al. [7] were able to classify
gender from videos by analyzing poses across a period of time.Many
techniques have been developed for these tasks utilizing machine
learning however to the best of our knowledge there appears to
be an underrepresentation when it comes to analyzing motion
capture data specifically. Developments in 3D pose estimation such
as the work done by Qammaz et al. [14] allow for much larger
amounts of motion capture data to be generated than is possible
using traditional optical tracking systems. A natural addition to



EECS 6414 Final Report: Human Motion State Classification from Motion Capture Data EECS 6414 Final Report, April 2021,

this pipeline is developing robust systems to catalogue and classify
these emerging sources of motion capture data.

Motion capture data is a unique data format that presents chal-
lenges to database and querying tasks. Kim et al. [10] found that
using annotated text tags is by far the most popular method of
querying motion capture databases. Kapadia et al. [8] comment that
this requires manually annotating the data, which can be costly.
Alternatively, some databases which allow public uploads rely on
the uploader to submit user-defined tags and metadescriptions.
These can often be lost over time or simply inaccurate. Further,
some nuances of motion are difficult to capture with text tags. As
example imagine a tag "human raises arm". One may then wonder:
Which arm? How high did they raise the arm? Was the person
sitting or standing? These are the types of specific information
often overlooked in the cataloging of animation data.

Anothermethod for queryingmotion capture databases is through
example [4]. An actor can perform the action if they have the nec-
essary equipment and use that to search a database through com-
parison. This requires a motion capture setup and space as well as
requiring that the actor is capable of performing the motion they
want to query which is impractical for the vast majority of peo-
ple. The data may also need to be preprocessed with sophisticated
techniques like dynamic time warping to account for temporal dif-
ferences between the actions in the database and the query action.

There are several other approaches [5, 9, 11], including using a
puppet as an actor for example querying, or using sketches which
requires the motion to be silhouetted before queries can be made.
We believe that motion capture databases could be more efficiently
searched if motion capture files could be classified into activities by
a machine learning classifier, removing the need for manual anno-
tation or user-defined tags and meta-descriptions. Motion capture
data could then be more efficiently organized and categorized as
well.

5 METHODOLOGY
Three machine learning models were trained to classify human
activities given individual poses. Human poses are highly variable
across time, as well as across different people. This makes the
problem well suited to machine learning, where an analytic method
of classification would be prohibitively difficult.

Similar to video formats, motion capture files are comprised of a
series of frames. Each frame can be read as a collection of points
representing the joints of the actor in 3D space. Analyzing temporal
data can be a difficult task due to the dependence each frame has
on each other. To simplify the problem space, individual frames
from MoCap clips of activities will be treated as labeled instances.
This transforms the problem space to be time-independent, and also
expands the number of training samples available. This is important
because the number of examples in motion capture data-sets is
normally quite small, which can make it difficult to adequately
train a classifier.

The MoCap files are in AMC format, used for MoCap data that
contains a list of all the joints and their 3D positions and rotations
for each frame. An example of the structure of an armature used by
an AMC file is shown in Fig. 1. An example of a frame in an AMC
file is shown in Fig. 2. It should be noted that some joints have more

Figure 1: The structure of joints used in the AMC format
visualized on a humanoid skeleton.

Figure 2: Example of an AMC file, where each frame speci-
fies (x,y,z) positions of all joints in the armature.

degrees of freedom and can rotate in more directions whereas other
joints can only rotate along one or two axes. The root joint contains
both a 3D position and a 3D rotation vector. AMC files will be used
due to the ease of obtaining them from the CMU MoCap database.
Data was arranged such that features are the 3D joint rotations and
labels are the activity being performed. Each frame is considered
as a tensor of length 29 where each element is a vector with length
between 1 and 6 numerical values, specifying the arguments for
each joints degrees of freedom.

6 EVALUATION
Data samples consisted of individual frames from motion capture
data, with class labels coming from the clip they were drawn from.
There were 571,436 examples of MoCap frames across four classes
of activities: running, walking, sitting, and jumping; taken from
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the Carnegie Melon University dataset (CMU).The dataset is un-
fortunately severely unbalanced, with walking constituting 87%
of samples. The distribution of the classes in CMU is shown in
Fig. 3. To mitigate this, class balancing was done by re-weighing
the dataset so that each class has an equal weight. Once trained,
frames of a single clip can then be considered for pose-based voting
(PBV) to classify entire motion capture clips.

Figure 3: The distribution of the classes for the examples in
our dataset. From right to left we have: Running, Walking,
Jumping, and Sitting.

Three models of classifier were trained: Naive Bayes (NB), Ran-
dom Forests (RF), and Sequential Minimal Optimization (SMO),
using 10-fold cross validation for training. We then compared per-
formance across each model with regards to the number of correctly
and incorrectly identified instances, root mean squared error, shown
in detail in Tab. 2. We evaluated the accuracy accross individual
frames as well as with voting in order to classify entire anima-
tion clips with results shown in Tab. ??. All models were able to
perform competitively, with Random forests being the best, with
100% accuracy, followed by SMO with 92.79% and NB with 83.74%.
The results with the inclusion of voting tell us something about
how incorrectly classified frames are grouped together. In the case
of NB the performance drops rather significantly to 73.51% when
trying to classify entire clips through voting. We can gather that
the frames this model misclassifies must be mostly localized and
concentrated in specific animation clips. On the contrary, SMO
gains some performance increases with the inclusion of voting in-
dicating a more even distribution of incorrectly classified frames.
This phenomenon is more clearly visualized in Fig. 5, which shows
the a vectorized visualization of classifications. The incorrect clas-
sifications are spread more evenly across clips for SMO, meaning
that more are able to go above the majority threshold. We can also
clearly see that in the case of NB, there is much more variation
in the labels of misclassifications, versus SMO which has more
structured error.

Model w/o PBV PBV
NB 0.8374 0.7351
RF 1.000 1.000
SMO 0.9279 0.9326

Table 1: Average performance forNaive Bayes (NB), Random
Forests (RF) and Sequential Minimal Optimization (SMO)
without and with pose based voting (PBV)

Figure 4: Comparison of classification accuracies for frame
and clip classification across algorithms.

This approach scales well to any motion capture database with
simple file types such as AMC files. For both SMO and RF, perfor-
mances with and without voting are only marginally different. In
order to classify entire clips it should suffice then to only draw a
random subset of frames from each clip. This can even be used to
improve existing datasets by classifying across sub-clips to differen-
tiate internal changes in motion state. Any animation format which
saves individual poses per frame can easily be used for this type of
classification with minor conversions.

All models trained quickly. A model for the Naive Bayes algo-
rithm took just under 13 seconds to build. For Random Forest, a
model took 835 seconds or just under 14 minutes to build. SMO
took the longest, with a model taking 3782 seconds to build, or just
over an hour. Each model was trained using 10-fold cross-validation
which increases the training time by 10 times.

7 CONCLUSION
This paper evaluated the use of current motion capture datasets for
training classifiermodels by treating individual animation keyframes
as datapoints. Three different types of classifiers were trained on
the CMU dataset, all achieving fairly competent results with Ran-
dom Forest and Sequential Minimal Optimization (SMO) models
attaining 100% and 92.8% accuracy respectively for individual frame
classification. Using these trained models to classify entire anima-
tion clips using winner-take-all voting yielded similarily 100% and
93.3% accuracies, indicating that a sample based approach may be
sufficient for classifying larger clips of animation data. However
due to severe imbalances in the dataset used, these results need
to be replicated using other more balanced datasets. In general,
animation datasets are currently sparse and poorly labeled, thus we
believe our models would be able to greatly improve the accuracy
of existing datasets, as well as be a good tool for efficient querying.

7.1 Data Availability Issues
One pitfall of this evaluation is that the small size and lack of
diversity of the CMU dataset makes validation on out-sample results
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Figure 5: Classification plots for NB (Left), RF (Center), and SMO (Right). Each point represents an animation clip, colours
correspond to the clip’s true label: Walk (Green), Run (Blue), Jump (Purple), Sit (Orange). Point position is the weighted sum
of classifications across every frame of the clip according to: (𝑥,𝑦) = 1

𝑁
(𝑊�̂� + 𝑅𝑟 + 𝐽 𝑗 + 𝑆𝑠).

quite difficult. The HDM05 dataset may be a good candidate for
testing since it contains human motion capture and is well labeled.
While not as substantial as CMU, its size may be at least usable for
validation. Another benefit is that examples are in AMC format
allowing for direct comparison. The primary roadblock however is
that most of the 70 motion classes in HDM05 are very specific. Only
walking and locomotion activities could be validated. Being able to
support multiple animation formats while using the same model
would greatly open up the availability of other animation datasets.
Since there are semantic differences in the way animation data is
saved, ablative studies would have to be performed to determine the
minimal joint information needed without harming performance.

7.2 Feature Importance Studies
Future work includes feature selection analysis to reduce the feature
space. It is expected that certain joint positions are not important
for determining the pose, such as the fingers and toes. However,
it would depend on what types of poses are being classified. For
example to classify poses involving hands the fingers would be
more important. If we consider the poses classified in this paper,
we expect that joints such as the pelvis, knees, and elbows would
probably be most important. Further testing would be needed to
validate this hypothesis.

Other algorithms could also be tested, as well as other poses.
Data availability is a problem, but if there was enough data available,
many kinds of poses could be classified. In this case, Random Forest
may or may not perform as well. Other algorithms that have not
been tested yet could be compared and may outperform Random
Forest in a situation where there is more data and more poses.
Further investigation could reveal which joints are important for
which kinds of poses.

To address the data availability problem, data collection studies
could be run. In this day and age, motion capture can be performed
with affordable cameras and a very simple setup. By running data
collection studies, many different poses could be captured.
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Class # Predicted # Actual Accuracy Precision Recall F1 Score ROC Area
NB
Run 48812 13484 93.42% 0.92 0.25 0.40 0.960
Walk 431584 495857 84.45% 0.85 0.97 0.90 0.938
Jump 29478 10303 96.53% 0.97 0.34 0.50 0.987
Sit 61562 51792 93.07% 0.71 0.6 0.65 0.951

Weighted Avg 83.74% 0.85 0.84 0.81 0.940
NA
SMO
Run 29754 13484 97.00% 0.97 0.44 0.60 0.988
Walk 462493 495857 93.04% 0.93 0.99 0.96 0.961
Jump 20303 10303 98.19% 0.98 0.5 0.66 0.999
Sit 58886 51792 97.35% 0.92 0.81 0.86 0.979

Weighted Avg 92.79% 0.93 0.93 0.92 0.970
RF
Run 13484 13484 100.0% 1.00 1.00 1.00 1.000
Walk 495857 495857 100.0% 1.00 1.00 1.00 1.000
Jump 10303 10303 100.0% 1.00 1.00 1.00 1.000
Sit 51792 51792 100.0% 1.00 1.00 1.00 1.000

Weighted Avg 100.0% 1.00 1.00 1.00 1.000
NB w/ PBV

Run 60 93 89.95% 0.61 0.95 0.75 NA
Walk 288 198 75.77% 0.99 0.68 0.81 NA
Jump 19 61 89.18% 0.31 1.00 0.47 NA
Sit 21 36 94.59% 0.50 0.86 0.63 NA

Weighted Avg 73.51% 0.87 0.75 0.77 NA
SMO w/ PBV

Run 73 60 96.11% 0.98 0.81 0.89 NA
Walk 288 266 93.26% 0.92 0.99 0.95 NA
Jump 24 19 98.70% 1.00 0.79 0.88 NA
Sit 23 19 98.45% 0.95 0.78 0.87 NA

Weighted Avg 93.30% 0.94 0.93 0.93 NA
RF w/ PBV

Run 60 60 100.0% 1.00 1.00 1.00 NA
Walk 288 288 100.0% 1.00 1.00 1.00 NA
Jump 19 19 100.0% 1.00 1.00 1.00 NA
Sit 21 21 100.0% 1.00 1.00 1.00 NA

Weighted Avg. 100.0% 1.00 1.00 1.00 NA

Table 2: Comparison of calculated metrics for individual frames and with voting
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