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One technique gaining popularity in the field of Machine Learning is the use of randomly 
assigned labels to pre-train a network. The obvious question that strikes someone who first 
comes across this is: “How can anything be learned from random labeling?”. At surface value it 
seems contradictory to the very idea of supervised learning, namely the idea that you are trying 
to learn to generalize on a set of labeled data. Surprisingly, using random labels does actually 
offer some distinct advantages. One problem facing data scientists is the monumental task of 
labeling the enormous collections of data collected every day. For most of this data to be of any 
use, countless man hours must be put in. Some of the most impactful developments recently 
have simply been the creation of large labeled datasets like ​Sports-1M​ or ​ImageNet​. With the 
vast amounts of data collected today, labeling an entire dataset is often simply impractical. 
Random labeling however, takes relatively little effort and no human input.  
 
In the paper by Google’s Brain Team aims to answer the question, what exactly do neural 
networks learn from random labeling? The topic of how neural networks learn in general is still 
being explored. Inherent over-parameterization is built-in to the structure of neural networks. 
Theory predicts that because of this, they should not generalize well, yet in practice the opposite 
is true. One reason to study random labeling is to gain further insight into the mechanisms 
behind neural network generalization. Understanding these techniques can help explain the 
critical stages of learning, as well as the mechanisms behind transfer learning. We know that in 
a neural network design, the earlier layers encode a useful structure of the data, whereas the 
later layers tend to specialize. It turns out that this is true even when training on random labels. 
Studies have shown through experiments that pre-training neural networks on random labelings 
can yield faster downstream training times. The brain team researchers showed that the useful 
structure encoded by neural networks in these scenarios are the principle values of the datasets, 
or eigenvalues. They present the theory behind this notion, as well as an implementable way to 
measure this effect. 
 
Firstly, they define the problem of training on random labels. Given probability distribution D
over , and finite set , randomly sample i.i.d. Instances  and i.i.d.X ⊂ ℝd Y x , , ... x }{ 1 x2  N ~ D  
labels . A network is trained using stochastic gradient descent (SGD) withy , y , ... y }{ 1  2  N ∈ Y  
weights randomly initialized. To understand the critical components of a set, they then introduce 
the notions of covariance and eigenvalues. (From p4) For input vector , let withx [x]μx = E  
covariance matrix  where . It can be said that is a[(x ) x ) ]Σx = E − μx · ( − μx

T Σx ∈ ℝd×d Σx  



symmetric positive semi-definite matrix​, which means that for all vectors ​z , the=/ 0  
statement  ​z z​  holds.​ ​The implication of this is that there exists an ​orthogonalΣx ≥ 0  
decomposition​  where each  is an ​eigenspace ​of , with corresponding..ℝd = V 1 ⊕ . ⊕ V k V i Σx  
distinct ​eigenvalue​ .Next, the idea of alignment is formalized (Section 2.1, p4, def 1) as:σi

2  
 

For symmetric matrices ​A​ and ​B​, it can be said ​A ​is ​aligned​ with ​B​ if they share the same 
eigenvectors​. 

 
As a toy example, consider a dataset drawn from a normal distribution  and network(0, )N Σx  
weights drawn from a standard gaussian distribution. Looking at the weights after training with 
SGD, let  be a random variable drawn uniformly from the first layer of weights. Thew ∈ ℝd  
following properties hold:   and   is aligned with (proof can be[w]E = 0 [w ]Σw = E · wT Σx  
found in Appendix C of the original paper). This means that the principle components of the 
weights are aligned with those of the dataset, proving that this can happen for ​some​ datasets. 
 
In practice real data is not drawn from a perfect normal distribution, so it is important to define 
some measure of ​misalignment​.​ ​ For positive definite matrices ​A ​and ​B​, they proposed the 
following definition of misalignment (section 2.2, p5, def 2): 
 

tr(A, ) = inf {M B :  Σ 2
1 Σ B Σ) }( −1 + B−1 − d  

 
Where  is the variable being minimized, with  and  aligned with ​A​. This can beΣ Σ ≻ 0 Σ  
thought of as the measure of the “distance to an aligned matrix”. This definition is used because 
the naive approach of euclidean distance between eigenvectors is not always feasible in practice 
when eigenvalues may be too similar to distinguish. Looking at Figure 1, alignment  for image 
data can be understood as visual similarity. 
 
Recall that the eigenvectors are shared but not the eigenvalues. Thus there must be some 
eigenvalue mapping function between the data and the weight vectors (section 2.3, p6, def 3), 
 

 σ , ...} , σ ↦  f : { 1 σ2 → ℝ  i √v ·i
T · Σw vi   

 
Where  are eigenvalues of , and  are unit eigenvectors of . This is done by findingσi

2 Σx vi Σw  
the eigenvectors and eigenvalues of the data and then finding the corresponding eigenvector and 
values in the weights (via the misalignment) . The researchers were looking to see what these 
functions looked like so they concocted a couple different test scenarios. They had a simple 
neural network with 2 fully connected layers and plotted the eigenvalue mapping after being 
trained on synthetic data using random labeling (seen in Figure 2). A simple convolutional 
network was tested, with 1 convolutional layer and 1 fully connected layer. The main difference 
was that the convolutional network was trained on real data from the CIFAR-10 dataset. Figure 



2 shows the eigenvalue mappings when using random labeling and real labeling. What was 
noticed is that the eigenvalue mappings for random and real labelings look quite similar, with 
the curves first increasing and then decreasing.  
 
Next, a network was trained with either randomly or real labeled data. The objective was to look 
at what can be done when the  covariance matrix of the weights ( ) is known. The weights ofΣw  
the network were then re-initialized randomly using , and trained it again (on real labels).Σw  
Figure 3 shows plots of the times for training and testing. These plots show how using the 
covariance matrix from pre-training to initialize weights can  result in  a speed up in training. 
Additionally, it can be seen that this increase in speed applies for pre-training on both randomly 
labeled and real labeled data.  
 
Knowing the eigenvalue mapping from the data to the weights, we can generate a covariance 
matrix that allows us to randomly re-initialize and get a speed up in training. To determine what 
eigenvalue mappings are useful, the Brain Team researchers looked at many eigenvalue 
mappings for different datasets and network configurations. Figure 4 shows some mappings that 
were found to be reasonably useful. Once an eigenvalue mapping is chosen, the weights for the 
first layer can be set, since the eigenvectors are shared between data and weights. Initialization 
is done by using the covariance matrix and randomly initializing the first layer. This process 
takes advantage of the training speedup found when using  to randomly initialize. The mainΣw  
difference is that pre-training is not needed for this method, making this a very efficient strategy 
given that you have chosen an appropriate eigenvalue mapping. 
 
With the first layer weights, the same eigenvalue mapping can be used to initialize the second 
layer weights. The process is the same, treating the prior layer as the new input. The 
eigenvectors are shared, so the eigenvalue mapping can be used to get a covariance matrix for 
the second layer weights. This method is used to propagate through the network and initialize 
all weights. Figure 5 shows the effects on training speed,  depending on how many layers are 
initialized this way.  Researchers tested various choices for eigenvalue mappings (from Figure 
4) and found that there was no significant performance increase between them. By having a 
simple eigenvalue mapping and knowing the eigenvectors of the data, the entire network can be 
initialized with weights that allow it to train quicker. Each additional layer that is initialized 
with this approach caused the training time to be shorter.  
 
When strictly using pre-training, one issue which was found to arise was that of negative 
transfer. After pre-training, certain ReLU nodes in the network become inactive. This occurs 
when that node does not activate for any input in the dataset. Having inactive nodes reduces the 
capacity of the network to represent different models. To mitigate this effect the Brain Team 
researchers  used networks with more width so that even with some inactive nodes, the network 
still has a higher representation capacity. 
 



This paper demonstrated the possibility for impressive training speed increases, however did not 
discuss how using this method affects performance on the dataset itself. Improvements in 
training speed may not be very useful if the final trained network ends up performing much 
worse on the dataset. This is an additional area that will need to be explored to see if this 
method is feasible in practice to pre-train neural networks. Another interesting area to explore 
would be investigating how this effect changes when using networks with different 
non-linearities. All networks used in this paper had only ReLU activation functions leading to 
the inactive node effect. This might have been mitigated if the authors experimented with leaky 
ReLU functions or sigmoid non-linearities. Another area for future research is extending this 
method of using alignments and eigenvalue mappings to other types of datasets. Theory should 
extend to different data types, however experimenting on other datasets may lead to more 
understanding about neural network training procedure. 
 
There are still large gaps in our understanding of how neural networks learn. As was discussed 
in lectures, neural networks have large numbers of parameters, yet do not overfit. Every 
research paper like the one discussed in this report helps us to gain better understanding in this 
area. In particular, the work done by Google’s Brain Team illuminates what optimal training 
procedures for neural networks might look like, as well as demonstrates the usefulness of 
randomly labeled data. These insights help in the development of newer machine learning 
models that can exploit these useful properties. There is still much work to be done in the study 
of neural networks for machine learning, but the work done in this paper pushes us forward in 
our understanding. 
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Figure 1 - Eigenvectors for Data and First Layer weights on Simple convolutional network after 

pre-training with random labels on CIFAR-10 (256 filters, 64 fully connected) 
 

Figure 2 - Eigenvalue Mappings from different network setups 
 
 
 



Figure 3- Results for Trials when using covariance matrix to randomly initialize network; left 
image is for real labels; middle and right images are the same trial but for random labels 

 
Figure 4 - Reasonable Eigenvalue Mappings Chosen by Researchers 

 

Figure 5 - Results of Layer Initialization technique on different networks 
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