
Object Feature Mapping and View Prediction for Same-Different Determination
of 3D Polyhedrons

Peter Caruana
York University

EECS 6323 Final Project
caruana9@my.yorku.ca

Abstract

This work proposes a composite algorithm for determin-
ing if two 3D polyhedrons are the same or different, us-
ing only 2D images. The approach is two-fold. First an
internal model of each object is made by gathering views
from various viewpoints and approximating the positions
and orientations of object faces. Second, the system will use
these models to make predictions about what it should see
from the other polyhedron by moving to specific viewpoints.
Based on the correlation between prediction and expecta-
tion the system will decide if the two polyhedrons are the
same or different.

1. Introduction

Deep learning methods, namely convolutional neural
networks (CNN) have been extremely successful in a
plethora of computer vision tasks. In particular, these meth-
ods are able to approach human performance for visual
recognition tasks such as image classification. Given an
image of an animal, most modern systems can easily deter-
mine if the image contains a cat, zebra, monkey etc. CNNs
currently are the standard hammer in the vision scientists
toolkit. However it must be noted that despite the immense
success these networks have had, there are a number of open
computer vision problems for which this approach simply
has not worked. CNNs, and all feed forward neural net-
works for that matter, struggle to understand high-level, ab-
stract concepts and thus cannot generalize outside of their
training domain. A prime example of this is to ask the
question, ”Given two objects of the same class, are they
the same instance of that class?”, otherwise known as the
same-different problem. An example would be to deter-
mine if two arbitrary shapes in an image are the same. Hu-
mans are quite good at this task, without having to have
seen the shapes beforehand. CNNs on the other hand per-
form very poorly at this. Despite this inability to perform

Figure 1. Visualization of mapped object features

well on a fairly straightforward problem, contemporary ma-
chine vision research has shown very little interest, despite
it being a fairly obvious question [6]. Of what work there
has been within this problem domain, it is clear that feed
forward neural networks are fundamentally unable to ade-
quately learn same-different relations between images, as
shown by Kim et al. [4]. Kim et al. [4] believe that feed-
back mechanisms such as attention, working memory, and
perceptual grouping are needed to approach human levels
of abstract visual reasoning.

One evident practical manifestation of this problem is in
the form of adversarial attacks which exploit vulnerabili-
ties within machine learning algorithms. These adversarial
methods can generate images which are imperceptibly dif-
ferent to humans, however causes catastrophic results for
image classifiers. An image which a network could pre-
viously classify correctly becomes unrecognizable [3][4].
This is one such example where the inability of CNNs to
abstract high level concepts is clearly on display.

The method proposed in this paper aims to try and solve
a same-different tasking using a more classical approach to
vision, as opposed to deep learning. The method is com-
prised of two distinct modules: feature mapping and predic-
tion. The approach is loosely based on how a human may

1

Figure 2. Enhanced view of various polyhedrons

approach solving the problem of determining if two 3D ob-
jects were the same or different. First, a person would give
each object a quick look around and build up an internal
model of each. With an understanding, of both objects, the
next step would be to try and find matching features for each
which line up. One could try to count all faces, all vertexes
etc. however the fastest and most likely option someone
may take is to find some views which look the same.

2. Related Work

2.1. Active Vision

One such idea to get around the limitations of two-
dimensional images is to use an active vision approach,
where the observer is an active agent which can change
its position to acquire new information. Aloimonos et
al. [2] demonstrate that an active observer can be much
more effective at solving basic vision problems than a
static observer. Active vision is more than correspondence.
The problem solving method involves intelligently selecting
viewpoints in order to solve a problem in the most efficient
way. The proposed method in this paper achieves this with
the predictor module, however the feature mapping module
is more akin to simple correspondence.

2.2. Same-Different Solutions

As noted by Ricci et al. [6], relational visual reasoning is
something most humans and many mammals are inherently
adept at. Yet, many state of the art machine vision mod-
els fail at this very task. The problem is a feed forwards
networks inability to reason properly across abstract ideas
of objects, images etc. Messina et al. [5] found that for
many same-different tasks this issue can be remedied by in-
troducing residual connections. On four difficult problems
from the SVRT dataset they show that architectures such as
ResNet-18 and CorNet-S are able to achieve human level
performance, where as older vision networks like AlexNet,
and VGG are entirely incapable of doing such tasks.

3. Polyhedral Scene Generator
The polyhedral scene generator (Polyhedral) created by

Solbach et al. [7] is an image generator designed for active
vision experiments. Polyhedral allows for the generation of
3D scenes containing one or more polyhedrons. One can
then specify camera parameters through an API to generate
new views from different positions and orientations of the
same scene denoted by its scene ID. For this paper, pairs of
scenes were generated with each containing one polyhedron
centered at the world origin. Each pair either contains the
same or different polyhedrons. Even for pairs which are
the same, the orientation is changed such that one cannot
simply compare views from the same camera view.

4. Methods
In this section, the object feature mapping and view pre-

diction method is introduced. Given a pair of scene IDs
from Polyhedral, the goal of this method is to be able to
determine if the scenes contain the same instance of a poly-
hedron. In separate pipelines, the system processes views
of each object from various viewpoints in order to build up
a spacial understanding of the object in each scene. These
mappings are then passed to a predictor module which uses
the understanding of one object to make predictions about
what it should see in the other scene. The accuracy of these
predictions are aggregated in order to make a final determi-
nation of same or different.

4.1. Problem Definition

A polyhedron is defined as a three-dimensional shape
which has planar polygonal faces, straight edges and
sharp vertices. The camera is represented by a position
~x = (x, y, z), and an orientation defined by three vec-
tors ~u,~r,−~z denoting respectively: up, right, and forward.
The cameras current view at position ~xi is Vi. A map-
ping of a polyhedron is denoted as P (F) where F is the
set of all unique faces detected. Each face is defined as
fi = f(P, n̂), where P is the set of 3D points belonging
to that face, and n̂ is the face normal vector, pointing away
from the origin. Given two polyhedrons A and B, generate

2

Figure 3. Camera rotation around central object. Each position is
spaced π/3 from the previous one, all at radius R.

PA = P (FA)) and PB = P (FB)), the predictor Pred uses
these mappings to make predictions and outputs a final re-
sult Pred(PA, PB) = y where y ∈ {Same,Different}.

4.2. Feature Mapping

Understanding of objects comes from combining visual
information with positional information to form a coherent
model. For each object, views will be processed from five
positions around the a viewing sphere centered at the origin
at a radius of R, seen in Figure 3. This gives sufficient
coverage to have seen every face visible from that azimuth.
The ideal is to capture each face in a view at least twice per
face using a minimal number of views. A spacing of π/3
was chosen to accomplish this, giving five unique equiradial
positions around the center. An initial view is taken at a
default radius and an optimal radius is then estimated based
on the size of the object in the view. At each viewpoint
processing is done to detect faces, then vertices and finally
depth. The following steps are repeated for each of the five
views.

4.2.1 Face Detection

Raw views taken from Polyhedral do not have very clear
distinction between faces and edges. Shown in Figure 4,
views are enhanced by maximizing the differences between
the colours of faces. This is achieved by first separating the
object from background through simple thresholding, and
determining which pixels correspond to the polyhedron in
the view. The entire image is squared element-wise which
exacerbates the differences in colour. This is further refined
by adding a term proportional to the pixel brightness for all

Figure 4. Enhancement of raw view from Polyhedral

pixels belonging to the polyhedron,

c′i,j, = ci,j, + ci,j, ·
255− ci,j

255
(1)

Where ci,j, is the colour of the pixel as location i, j, be-
tween 0 and 255. This is done twice, and finally the image
is squared one final time. This gives all faces the two prop-
erties of being all far from the background colour, and all
visually distinct from each other. Each face is then seg-
mented by grouping all similar non-zero colour values.

4.2.2 Vertex Detection

For each segmented face in the view, a bounding polygon is
found which best approximates the shape. Each point defin-
ing the polygons corners is a likely vertex. The criteria for
the polygon is that it must have more than three points, and
it must approximate the area of the face by at least ±10%.
Because some vertices may belong to multiple faces, all the
detected vertices in the entire view are gathered into clusters
where the maximum distance between all points in a given
cluster C is 30 pixels. For each cluster Ci the true vertex vi
is found as the weighted least squares centroid of all points
p ∈ Ci is given by:

µ
(c)
i =

1∑
wn

|Ci|∑
n=1

pn
wn

(2)

Where wn is the weight of point pn. For µ as the average
position of all points in cluster Ci, wn is then determined
by the formula:

wn =
1

||pn − µ||22
(3)

The final result is the detection of all likely vertices
within the current view, seen in Figure 5.

4.2.3 Stereo Point Depth

Depth cannot be easily inferred from one image. The stereo
depth algorithm from Adi and Widodo [1] is applied in or-
der to accurately determine the positions of detected ver-
tices. The camera is shifted in the −~r direction by a small
amount b determined as a function of the radius,

b = 0.05 · (R/2) (4)

3

Figure 5. Global vertices detected across entire view

With this new view from a slightly different position the
previous steps of face and vertex detection are repeated.
Since the direction of motion is known, vertices are between
views by seeking the nearest vertex to the right of each point
detected in the original view. The horizontal distance be-
tween each pair of points (in pixels) is the disparity, d. The
depth for each vertex pair v1, v2 is then given by,

Z =
b · f
d

(5)

Here f is the apparent focus of the camera in pixels. The
camera in Polyhedral uses has a 35mm focus, 32mm sensor
size and outputs at a resolution of 1920× 1080. The appar-
ent focus is then (35/32) · 1920 = 2100. From the depth,
the coordinates of the real vertex v = (x, y, z) are

x =
Z · (1080/2− v1.x)

f

y =
Z · (1920/2− v1.y)

f

z = R− Z

(6)

Now with the real positions of each point (relative to the
camera), the vertices are re-correlated with the faces found
in the original view. Figure 6 shows the process of re-
correlation, simply based on the vertices overlapping each
face. By knowing the camera orientation, the coordinates
can be transformed to world coordinates through multipli-
cation with the inverse of the camera transformation matrix.
Each face is now defined by a set of vertices in real coordi-
nates.

4.2.4 Face Pruning

Faces are likely to be detected from multiple views. To
eliminate redundancy as well as improve the accuracy of

Figure 6. Vertices being re-correlated to faces in the view. Green
means the vertex belongs to the face, red means it does not.

the detected features, faces are grouped by having similar
area, as well as similar normals. Faces which are deter-
mined to be similar are then averaged. Area of a polygon is
calculated using the formula,

A =
1

2
(x1 · y2 − y1 · x2 + x2 · y3 − y2 · x3 + ...) (7)

Where each (xi, yi) are the planar coordinates of every
point i in the face. Since a polyhedrons face is assumed
to be planar, the normal can be calculated using three points
A, B and C as,

n̂ =
AB ×AC
|AB ×AC|

(8)

4.3. Predictions

With a set of mapped features assembled for each object,
they are then passed on to the predictor. Simply choosing
views at random from each object scene would be a poor
way to evaluate sameness visually. Having an understand-
ing of each object allows the predictor to intelligently select
views to compare. The predictor first looks through each set

Figure 7. Visual representation of how the camera aligns itself to
look head on at a face with normal N by finding where N intersects
the viewing sphere

4

of faces and finds the ones which have a similar area. Ide-
ally more information would be used to select similar faces
however, in practice the vertices in each face were not accu-
rate enough to make good comparisons. For a pair of faces
fA, fB from scenes A and B, the camera in each scene
is oriented to where the normal of each face intersects the
viewing sphere of radius R shown in Figure 7.

The camera positions itself at that intersection point and
looks at the center, giving it a view of that face head on.
Consider the view of face fA as the prediction, and the view
of face fB as the observation. If the objects are the same, it
is to be expected that the views should be very similar. For
each likely similar face, a bounding polygon is calculated,
and its centroid. The centroids for each shape are aligned to-
gether at (0,0). An optimization algorithm attempts to align
the views together, with the goal of minimizing congruency
score. Congruency is defined as the weighted sum,

C = α ·As + β · Ps (9)

Where the area ratio score, As, is the ratio of how much
area overlaps. This is easiest seen in Figure 8, where As

would be calculated as the sum of red and blue areas, over
the purple area. Ps is the point distance score, which is
the sum of all the shortest distances from a point in fA to
any point in fB . α and β are the weight coefficients be-
tween (0, 1). The idea behind this weighted sum is to re-
ward having a similar size, but also reward alignment. The
best (lowest) value is found for each pair of faces. The con-
gruency score for the two objects is given by the average
congruency across all predictions. Another metric is simply
the ratio of each shape’s perimeters denoted by λ. The fi-
nal output is a 2D point S = (C, λ). Experimentally it was
determined that the optimal region for predicting sameness
was C < 0.3 and λ > 0.7

Figure 8. Bad congruency (left); Good congruency (Right). The
blue area corresponds to the predicted shape, the red area to the
observed shape, and purple is area which overlaps.

4.4. Results

Testing was done on nine pairs of same objects, and nine
pairs of different objects (18 total). Figure 9. shows the
joint perimeter-ratio congruency scores for each prediction.

It is clear that pairs of same objects tend to have predictions
with perimeter ratios closer to one, and much lower congru-
ency values (lower is better). Taking the average prediction
scores per object pair yields an even more pronounced di-
vision between same and different, these results are shown
in Figure 10. By thresholding the bottom right region (high
perimeter ratio, low congruency), this method can correctly
determine sameness 16 out of 18 times. While this data is
linearly separable meaning an an accuracy of 100% is pos-
sible, in reality a predictor which scores perfect on this data
would perform worse on other datasets.

These results appear to indicate that the general approach
for solving this problem is sound, however could benefit
from refined accuracy in feature mapping. Manually an-
alyzing views predicted from face normals shows that a
non-insignificant portion of views were not directly facing
a polyhedrons face. Considering the performance in spite
of occasional half-baked predictions and that 3D mapping
from corresponding 2D images is a well explored problem,

Figure 9. Scores for each view prediction for same pairs (Blue);
different pairs (Orange). The further to the bottom right, the
stronger the prediction

Figure 10. Average prediction scores for same pairs (Blue); differ-
ent pairs (Orange). The further to the bottom right, the stronger
the prediction

5

it is not difficult to imagine this approach with more accu-
rate sub-algorithms.

5. Conclusion
The method proposed in this paper is to first build under-

standing a pair of objects, and then use that understanding
to make predictions on what it would expect to see if they
are indeed the same. By using an active vision approach
to prediction, the system is able to utilize minimal views to
come to an answer of reasonable accuracy. Problems with
the vertex detection and point localization lead to somewhat
inaccurate results for features. This affects performance of
view prediction, however results are still quite promising. It
is believed that improving the accuracy of feature mapping
would clearly lead to much higher levels of performance uti-
lizing the same prediction algorithm and comparison met-
rics.

References
[1] K. Adi and C. Widodo. Distance measurement with a stereo

camera. International Journal of Innovative Research in Ad-
vanced Engineering, 4(11):24–27, 2017.

[2] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision.
International journal of computer vision, 1(4):333–356, 1988.

[3] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and
J. D. Tygar. Adversarial machine learning. In Proceedings of
the 4th ACM workshop on Security and artificial intelligence,
pages 43–58, 2011.

[4] J. Kim, M. Ricci, and T. Serre. Not-so-clevr: learning same–
different relations strains feedforward neural networks. Inter-
face focus, 8(4):20180011, 2018.

[5] N. Messina, G. Amato, F. Carrara, C. Gennaro, and F. Falchi.
Solving the same-different task with convolutional neural net-
works. Pattern Recognition Letters, 143:75–80, 2021.

[6] M. Ricci, R. Cadène, and T. Serre. Same-different conceptu-
alization: a machine vision perspective. Current Opinion in
Behavioral Sciences, 37:47–55, 2021.

[7] M. D. Solbach, S. Voland, J. Edmonds, and J. K. Tsotsos. Ran-
dom polyhedral scenes: An image generator for active vision
system experiments. arXiv preprint arXiv:1803.10100, 2018.

6

